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Computational Methods of Identifying Novel sRNA Genes in E. coli

Introduction:
Despite the fact that the existence of sRNAs has been known for some time, most

gene identification methods and programs are geared to find only genes that code for
proteins, and are incapable of finding genes whose functional form is the RNA itself.  It
is only recently, with the explosion of identified sRNA genes and the belief that many
more exist, that concerted efforts are being made to develop methods that can identify all
of the sRNA genes in the genome sequences available, much as has been done (to a
certain extent) with protein coding gene-finding algorithms.  However, developing
accurate computational methods of whole genome scale sRNA gene finding has proven
difficult, for a variety of reasons (Eddy, 2001).

Small RNAs are defined as genes whose functional product is the transcribed
RNA, and which do not code for proteins.  Small RNAs come in many different flavors,
with a variety of functions and characteristics (see Box 1).  This makes it extremely
difficult to create an algorithm that can identify them all from raw sequences data,
especially as not all of the characteristics of each group are known yet (Chen et al.,
2002).

Box 1: Abbreviations for different classes of non-coding RNA (ncRNA or sRNA)

• fRNA Functional RNA — essentially synonymous with non-coding RNA
• miRNA MicroRNA — putative translational regulatory gene family
• ncRNA Non-coding RNA — all RNAs other than mRNA
• rRNA — ribosomal RNA
• siRNA mall interfering RNA — active molecules in RNA interference
• snRNA mall nuclear RNA — includes spliceosomal RNAs
• snmRNA Small non-mRNA — essentially synonymous with small ncRNAs
• snoRNA Small nucleolar RNA — most known snoRNAs are involved in rRNA

modification
• stRNA Small temporal RNA — for example, lin-4 and let-7 in Caenorhabditis

elegans
• tRNA Transfer RNA

Eddy, 2001

Small RNAs are also relatively difficult to identify in silico due to the fact that their
sequences have no obvious inherent statistical biases that can be exploited, as do exon
coding genes (i.e., conservation of the ORF) (Rivas and Eddy, 2000).  The lack of known
and recognizable features, coupled with the lack of obvious sequence biases, make



finding sRNA gene a very difficult challenge to bioinformaticists, even in an organism as
well studied as E. coli.

Despite these challenges, several groups have recently made an effort to produce
methods of computationally identifying various classes of sRNA genes in E. coli.  They
have used a variety of methods, focusing on various characteristics recognized in the
currently known sRNA sequences in E. coli.  The three major computational methods of
sRNA gene-finding used by the four groups discussed are listed in Box 2.  All four
groups used one or more of these methods in their algorithms.

      Box 2: Three Methods of Computational sRNA Gene-finding

  1. Prediction of RNA transcriptional signals
     a) promoters
     b) terminators
     c) lack of potential small ORFs
  2. Sequence content statistics
     a) secondary structure stability
     b) base composition
  3. Comparative genome analysis
     a) conservation of sRNA sequence between related species
     b) conservation of secondary structure by compensatory base changes

Methods of identifying sRNA genes:
In one approach to identifying sRNA sequence in E. coli, Wasserman et al. (2001)

used conservation of intergenic regions (IGs) between E. coli, Salmonella pneumonia,
and Klebsiella pneumonia to generate a list of putative sRNAs.  When examining the 13
small RNAs known in E. coli at the time of their experiments, they noticed that these
genes were well conserved in closely related bacteria.  While typical ORF genes showed
<70% conservation, the sRNA genes showed >85% conservation between Salmonella
and E. coli.  They hypothesized, based on this difference in relative conservation and on
positive tests of conservation of random noncoding regions between the same organisms,
that extended conservation within intergenic regions was statistically significant enough
to use for predicting novel sRNA genes.  To this end, they compared all IG regions 180
nucleotides or greater in length to similar regions in S. pneumonia and K. pneumonia, two
closely related bacterial species.  After finding 1097 regions of high homology, regions
containing tRNAs, rRNAs, repetitive sequences, putative ORF regulatory regions, and
previously identified ORF promoters or 5’ UTRs were removed.  Evidence of putative
promoters, rho-independent terminators, and stem loops were considered especially
indicative of potential sRNA genes.  Using this computational analysis and information
from high-density oligonucleotide arrays, including higher expression levels and
expression of both strands, their list was narrowed down to 59 candidates.

To determine which of their candidates actually coded for sRNAs, the standard
method of transcript detection by Northern blotting was performed.  Of the 59 putative
transcripts, 23 were detected as small transcripts.  For these sequences, the conserved



blocks of sequence from K. pneumonia, Salmonella, and Yersinia pestis were selected
and aligned by hand for evidence of promoters and terminators.  While doing this, it was
noticed that six out of the 23 transcripts showed a pattern of conservation corresponding
to a short ORF (higher variation in positions that could be the third nucleotide of a
codon), and were determined to have potential ribosome-binding sites.  These were
eliminated as putative short ORF genes.  The remaining 17 transcripts showed no
evidence of translation potential, and were tentatively designated as novel sRNA genes.

After the completion of their experiments, Wasserman et al. (2001) conclude that,
while they were able to identify IG regions containing novel RNA sequences at a fairly
well (~30% of the selected candidates encoded novel small transcripts, and ~29% of the
selected candidates encoded novel sRNA genes), a high level of sequence conservation is
not by itself sufficient to indicate small RNA genes.  Most of the highly conserved
sequences found corresponded to the regulatory regions and UTRs of flanking regions,
and even an attempt to identify and remove these sequences was insufficient and needed
to be complemented by a high density oligonucleotide array.  Also, not all sRNAs are
conserved between even closely related species, and the sRNAs that are processed from
mRNAs or encoded by an ORF antisense strand will be missed.  Despite these inherent
flaws, this computational method does show promise as a possibly supplemental way to
initially identify a pool of sequences that can be examined by more sophisticated methods
for sRNA genes, as it can be utilized in any organism for which the sequences of closely
related species are available, and can find sRNAs that do not have a stable secondary
structure.  It can also be used to identify and group families of sRNA genes based on their
pure sequence conservation between species.

In a second approach, Argaman et al. (2001) started their search for sRNA genes
in E. coli by examining the current known sRNA sequences and developing a set of
criteria that appeared to be similar for all of the known sequences.

1. located in “empty” intergenic intervals between annotated protein coding
genes

2. conserved in some closely related species
3. transcriptional signals: promoter shortly upstream of terminator

Due to the limited number of known sRNAs, they used a heuristic approach instead of an
automatic machine-learning approach.  Using their developed criteria, they first compiled
a list of all “empty” IG regions in E. coli using the Colibri database
(http://genolist.pasteur.fr/Colibri/) and searched for the most commonly used
transcriptional promoter and terminator sequences.  These common signals were those
corresponding to the major E. coli RNA polymerase sigma factor, _70, and to Rho-
independent terminators, which are recognizable by specific sequences and structural
features in the RNA.  Their list of predicted signals was then narrowed down to those in
which the predicted promoter and terminator signal pairs were 50-400 base pairs apart,
approximately the lengths of the known sRNAs.  These predicted sequences were then
compared to the genome sequences of Salmonella typhi, S. paratyphi, and S.
typhimurium.  Those sequences showing significant conservation between all three



organisms (24 putative sequences) were further analyzed by Northern blotting to confirm
the presence of small transcripts, and then assayed by primer extension analysis to
determine the true ends of the transcripts.  From the 24 putative sRNA genes, 23 were
tested experimentally in K12 E. coli at different growth phases, and of these 14 were
shown to encode novel small RNAs.

After determining the presence of small transcripts, the positions of these
sequences in the E. coli genome were examined, along with flanking sequences.  It was
determined that most of the new sRNA genes were clustered in short IG regions of 600
base pairs or less.  Also, it was seen that there were two major types of conservation
patterns of sRNA genes with respect to their flanking sequences.  For some of the
transcripts, the entire surrounding region, including both flanking IG sequences and
genes, was conserved between all of the bacteria examined, while for the rest, the
surrounding IG sequences (and some genic sequences) were unconserved.  This reveals
that conserved sRNAs can potentially function in a variety of genomic contexts, and are
not necessarily dependent on surrounding genes.

The results gained from these experiments show that, in organisms for which
transcriptional signals are well characterized, such as E. coli, a search for these
transcription signals in IG regions can be a powerful tool for finding potential small RNA
genes, especially when coupled with comparative analysis with other organisms.  Of
course, not all sRNA genes will be conserved between the organisms studied, and as such
there may be a difference in the false negative rate based on which other genomes are
analyzed.  This example does indicate that a rule based approach, based on previously
identified sequences, can be useful, and as more sRNAs are identified, more
characteristic can be identified and utilized as well, making it a more precise search
method.  However, it is already evident that not all sRNAs follow all of the same rules.
Thus, the addition of certain rules or criteria to the search, while increasing its sensitivity
for certain sRNAs, will likely also increase the false negative rate by not identifying
sRNAs that do not share all of the same characteristics.  When using a criteria-based
system such as this, it is important to understand that only the small RNAs that fit into the
specific class that is described by your chosen criteria will be found by your search
algorithm, and others will be excluded.  One possible way of allowing the use of a greater
number and more specific criteria is to allow weighting of various combinations of
criteria (necessitating the creation of new criteria), such that certain combinations seen in
currently known examples result in raising the score, while other combinations not seen
in currently known examples results in lowering the score.  Of course, there is always the
possibility that sRNAs containing the negative set of criteria do exist and just have not
yet been found, and the program will of course not be able to find these.

 In yet another approach to computationally identify sRNAs in E. coli, Carter,
Dubchak, and Holbrook (2001) designed a machine learning approach that utilized neural
networks and support vector machines to identify the common features present in known
sRNA sequences to predict novel sRNA genes in IG regions.  Their hypothesis was that,
despite the currently apparent lack of statistical signals heralding sRNA genes,
characteristic signals for the expression of sRNAs must exist and be distinguishable from



untranscribed sequences.  In utilizing this approach, they focused on two aspects of
sequence analysis: secondary structure stability and base composition.  The secondary
structure stability was analyzed by determining the free energy of folding within each
RNA sequence window considered, and base composition was represented by the
percentage of each nucleotide and dinucleotide pair in the same windows.  After
considering both sets of parameters separately, a final voting network was used to
consider and weigh the results from both input networks and return a decision on whether
or not the sequence was indicative of a sRNA gene.  In their tests, they predicted
approximately 370 novel sRNA genes in E. coli, and while jackknife testing experiments
revealed 80-90% accuracy, they did not perform any biological assays to confirm their
results.

In applying their networks to the IG regions of E. coli, they used a buffer zone of
50bp on either side of the ORF to account for 5’ and 3’ UTRs (an approach noticeably
lacking in the other groups’ analyses).  While this was a good attempt in theory, in
practice it would be better to know (or at least statistically approximate) the extent of the
true transcripts, perhaps by looking for putative promoters and terminators as in Argaman
et al. (2001).  Also, this approach doesn’t take into account the existence of operons,
although whether or not sRNAs can be coded by the inter-ORF sequences of operons has
not yet been determined.  After extracting the shortened IG regions, they had to use these
non-annotated IG sequences as negative examples of RNA genes in order to  train their
machine, while using the small number of known sRNAs as positive examples.
Unfortunately, there are very likely some sRNA genes present in these non-annotated IG
sequences.  They assume that the RNA coding sequences make up only a small fraction
of the non-annotated sequence, and are thus justifiable in being used, but they are still
making an assumption.  This assumption cannot be proved valid or invalid by their own
methods, either, as they use their program to detect and remove putative sRNA sequences
from their non-coding database and retrain on the purified database.  This may lead to
overtraining of their program, in that sRNA sequences missed by the first iteration will be
continually considered as non-coding sequence, and continual training will remove any
chance of these sRNAs being uncovered by the program.  Of course, should these
sequences be uncovered and confirmed by other methods, they can be removed from the
non-coding database and the program can be retrained, and possibly uncover others of
these types.

In utilizing secondary structure stability as one of their inputs for their network,
Carter, Dubchak, and Holbrook (2001) disagree with the findings of Rivas and Eddy
(2000), which state that the predicted stabilities of the secondary structures of most
sRNAs are not sufficiently different from those of random sequences to be used as a
criterion for identification.  While Carter, Dubchak, and Holbrook agree that random
sequences are not sufficiently different from sRNAs, they postulate that the non-coding
sequences (that actually exist in E. coli, as opposed to purely random sequences, which
have not been proved to exist) used in their analysis have their own sequence biases,
which result in a statistically significant difference in secondary structure stability from
that of sRNAs.  They also state that the removal of secondary structure stability of
putative sequences from their networks greatly reduces the algorithm’s ability to



accurately identify novel sRNAs (based on a comparison with the ones they originally
identified).

This method of sRNA identification has several key strengths.  First, any
predictions made by the machine can be checked for agreement between each of the
different networks, potentially reducing the rate of false positive predictions.  Second,
each input parameter (the different sequence composition statistics or free energy of
folding determinations), and potentially any new parameter introduced, can be
individually assessed and weighted based on its relative importance in the prediction.
This make the program very flexible, and potentially able to adapt to the differences
between sRNA genes, making it a feasible approach to identify more than one type of
sRNA based on different sets of criteria.  And finally, this approach may be able to
predict sRNAs in many different organisms, as it is not inherently organism-specific, and
can be retrained for different genomes.  Also, as more sequences (both of sRNAs and true
non-coding IG regions) become available, further training and iterations of this approach
will only become more accurate.  Unfortunately, without any further analyses, it is not
possible to comment on how well it truly identified novel sRNAs, and as such its success
is still in question.

In the final approach to identifying sRNAs in E. coli, Rivas et al. (2001) focused
on the conservation of secondary structure recognized to exist in some of the known
sRNAs.  They had previously determined that a low energy secondary structure in a
sRNA was not statistically different enough to differentiate it from possible secondary
structures in random sequences (Rivas and Eddy, 2000).  However, they recognized that
sequences within genomes are conserved for many different reasons, including coding
sequences for exons and sequences that produce secondary structures in expressed RNAs,
and as such the ways in which they are conserved differ as well.  They used the idea that
different sequences are conserved in different ways to design an algorithm that looks for
distinctive patterns of mutation in conserved intergenic regions that correlate with a
conservation of RNA secondary structure, and contrasted that pattern to patterns of
mutation that reflect coding sequences or “random” sequences.

In this way they created a program (QRNA) that detects novel structural RNA
genes (those that form a coherent and functional secondary structure in vivo) by means of
a comparative sequence analysis algorithm.  Their algorithm is composed of three
stochastic “pair grammar” probabilistic models that each sequence in IG regions can be
modeled as (see Fig 1).

RNA: mutation pattern consistent with structural RNA sequence, modeled by pair
stochastic context-free grammar (SCFG)

COD: mutation pattern consistent with protein coding sequence, modeled by a
pair Hidden Markov Model (HMM)

IND: independent pattern of mutation, the “null hypothesis”, modeled by a pair
HMM



In using this method, it is important to note that all three models need to be at the same
evolutionary distance, or they may distinguish alignments on the level of conservation
alone instead of on the different patterns of mutation (Rivas et al., 2001).



Fig 1: Three models of sequence mutation (Rivas et al., 2001)

This approach was applied to the IG regions of Escherichia coli in comparison to
sequence data from four related enterobacterial genomes, those of Salmonella typhi, S.
paratyphi, S. enteriditis, and Kleisella pneumonia.  Each IG region of E. coli was
BLASTed against the other genomes, and those alignments with an E value of less than
0.01, a length of 50 nucleotides or more, and an identity of 65 or greater were retained,
resulting in 23,674 total pairwise alignments.  Each of these was analyzed by QRNA to
determine which sequences matched the RNA class of secondary structure conservation,
resulting in 556 candidates (including all four positive controls of known sRNAs
included in the test).  Various tests (Rivas and Eddy, 2001) were conducted on QRNA’s
performance suggesting a sensitivity of 80%, and a specificity of about 85% (meaning
that about 85% of the 556 candidate loci should correspond to sequences with true
conservation of secondary structure).  Several classes of sequences have conserved
secondary structures but are not sRNA genes, including rho-independent terminators,
rRNA spacers, and other cis-regulatory RNA structures; any loci showing evidence of
these features were removed, leaving 275 candidate loci.  49 of these candidate loci were
assayed for expression by Northern blotting, and 11 showed RNA transcripts of less than
400 nucleotides.  However, despite the fact that several known RNAs are expressed only
under certain conditions, they only used one set of growth conditions, and as such
negative results do not necessarily indicate the absence of a sRNA gene.

The major strength of this type of analysis is that it doesn’t require any organism-
specific information, such as transcription promoter consensus sequences or terminator
structures, and thus can be used on any genome in which there is sufficient comparative
sequence data.  Unfortunately, it also suffers from several weaknesses.  The fact that it
requires comparative sequences to identify putative sRNA genes means that it cannot be
used on an independent genome for which no comparable sequence information is
available.  Also, it was shown that the results of the initial run of the program have a
greater than 50% false positive rate, in the form of structurally conserved elements of
mRNAs or other non-sRNA sequences.  This means that any results must be further
analyzed to remove these types of sequences, and the success of this removal depends on
knowledge of the elements that correspond to translational machinery in the specific



organism, reducing the breadth of genomes on which it can be used.  And finally, it is
well known that not all sRNA genes have conserved secondary structure, or are
conserved between genomes at all, and these sequences will not be identified by QRNA.
This program demonstrates a method of finding only a very specific subset of sRNA
genes, based on one major criterion, and as such, cannot be used as a general sRNA gene
finding program.

Proposal of possible improvements:
In the preceding discussions of methods geared towards identifying novel sRNAs

in the E. coli genome, it has become readily apparent that no one single method is
capable of finding all of the different types of sRNAs, even in an organism as well
studied as E. coli.  This can be attributed both to our still incomplete understanding of
sRNAs in general, as well as the fact that the different types of sRNAs all seem to have a
fairly individual signature.  Structural sRNAs maintain a secondary structure through
compensatory mutations, while siRNAs and miRNAs must conserve complementary
sequence with their targets.  And the fact that not all sRNAs are conserved in all genomes
reduces the power of comparative studies.  Thus, it appears necessary to develop a group
of computational methods that are each specifically tailored to a different class of small
RNAs, such that while each program will only find a specific subset of sRNAs, it will be
able to find them with a high fidelity.

There are also many possibilities of improvements and expansions to the existing
programs previously outlined, such that a greater flexibility and accuracy can be
imparted.  For example, many endogenous siRNAs are transcribed from the antisense
strand of ORFs (Eddy, 2001), and as such they are evolutionarily linked to the sequence
they regulate, and will always maintain perfect complementarity.  All efforts to identify
sRNAs to date have focused on IG regions, and will consequently miss these siRNAs.  It
is possible to examine ORFs for putative internal promoters on the antisense strand, at
least in E. coli where the _70 consensus sequence is known.  Also, as these sRNA
sequences are most likely tightly controlled either temporally or environmentally, a better
understanding of sequences that control temporal or environmental transcriptional
responses would allow for better in silico sRNA gene-finding programs, as they could
look not just for putative promoters and terminators, but also for putative control
sequences.  While not entirely a computational approach, another likely method of
finding sRNAs that are present in ORFs, which all of the programs described would miss,
would be, as in the Wasserman et al. (2001) paper, examination of high density
oligonucleotide arrays for transcripts corresponding to the antisense strand of ORFs (in
the majority of instances for which two different genes are not coded on each strand).
Computational methods can be developed to quickly examine these arrays specifically
searching for this evidence.

In Rhoades et al. (2002), they discuss using the sequence of previously identified
miRNAs in Arabidopsis to identify genes that they could potentially regulate.  This
approach works due to the fact that the miRNAs (or at least the functional ~22nt piece cut
from the hairpin precursor) have near-perfect complementarity to their targets.  This
suggests an approach for finding miRNAs de novo, namely by comparing intergenic



sequences to known or predicted mRNA sequences, looking for ~22nts of near-perfect
complementarity.  One problem with this is that miRNAs in other organisms aren’t as
perfectly complementary as they are in Arabidopsis, so how much mismatch and where it
is acceptable must be determined.  Zeng and Cullen (2003) have made an important start
in this direction by determining that a specific miRNA in humans, miR-30, cannot
completely discriminate between targets that differ by only a single nucleotide.
However, certain point mutations in the targets are able to prevent suppression of
translation by miR-30, suggesting that certain nucleotides are far more important to target
recognition than are others.  Further work may help determine if this is characteristic of
all miRNAs, and, if so, if it can be determined computationally which nucleotides must
stay complimentary, and which can be variable.

If phylogenetically conserved miRNAs have acquired multiple antisense targets,
thereby inhibiting their subsequent evolutionary variation (Ambros et al., 2003), then a
program could be created that searches for conserved miRNAs in other species,
comparing not only sequences between species, but also sequences within species to see
if a putative conserved miRNA complements the same homologous genes between
species.  This would allow further definition of miRNA functions, and can be combined
with secondary structure predictions and examinations of IG sequence upstream and
downstream of the identified putative miRNA looking for complementarity within the IG
region and stable secondary structures, as miRNAs are processed from RNA hairpins
(Lee, Feinbaum, and Ambros, 1993).

In developing better computational methods of sRNA gene-finding, more must be
understood about the biology of sRNAs, and of the organisms in which they are studied.
In order to examine IG sequences, it is necessary to know where the actual intergenic
regions are, instead of just using inter-ORF sequences.  This will require further
knowledge about promoters and terminators to allow computational identification, or a
concerted biological assay to identify full length transcripts.  Also, a program that can
recognize more that just the _70 transcription factor would be a good start, but more work
needs to be done to learn about the different transcription factors to be able to recognize
their consensus sequences.  Also, as rho-dependent transcription terminators are poorly
characterized and no consensus rho factor binding site is known (Lewin, 1994), it would
be extremely difficult to identify any sRNAs that are transcribed in this manner without
further knowledge.

Perhaps a way of identifying multiple types of sRNAs in a genome could make
use of an expanded version of the neural network described in Carter, Dubchak, and
Holbrook (2001), which can balance a greater variety of statistics than were used in the
original iteration.  As more sRNA sequences are identified, more characteristics, and
more importantly, how those characteristics group in each of the defined families of small
RNAs, can be used to build a type of scoring matrix that can identify multiple
characteristics in a single sequence and score each characteristic in the context of the
others.  This would create not only a single yes or no score, but also a score that places
the putative sRNA sequence into a previously existing family of small RNAs, facilitating
faster biological identification by the appropriate methods.  In the end, it is apparent that,



as of now, we do not know enough about small RNAs to develop such a program, and
continued efforts must be made at biological and computational identification to increase
our knowledge to the point where it is possible.
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Appendix: Summary of the strengths and weaknesses of the computational methods of
identifying sRNA genes in E. coli

Wasserman et al., 2001
Strengths Weaknesses
-Very productive in identifying IG regions
that encode novel small transcripts (>30%
of putative candidates encoded small
transcripts)
-Can be used for any organism with
sequences of closely related organisms
available

-High level of conservation between
organisms is insufficient to indicate sRNA
genes
-Misses any sRNAs processed from
mRNAs or encoded by an ORF antisense
strand
-Not all sRNAs are conserved between
even closely related species

Carter, Dubchak, and Holbrook (2001)
Strengths Weaknesses
-Predictions can be checked for agreement
between the different networks
-Each input parameter can be weighted
based on its importance to the prediction
-May be able to predict sRNAs in many
different organisms after retraining
-As more sRNAs are identified, more
criteria can be included, increasing its
usefulness

-Putative transcripts were not tested
biologically
-Potentially too few or ambiguous criteria
-Possibility of overtraining program to not
identify certain sRNAs

Argaman et al., 2001
Strengths Weaknesses
-In organisms for which transcription
signals are well understood, it is a powerful
biological principle based approach, rather
than a purely statistical one
-As more sRNAs are identified, more
characteristics can be defined, making a
characteristic driven program better able to
recognize novel sequences

-Uses the consensus sequence of only the
major sigma factor, missing any sRNAs
associated with alternative sigma factors or
stress-specific transcription factors
-Uses only rho-independent terminator
sequences, missing any rho-dependent
terminators
-Requires detailed knowledge of the
organism’s transcriptional machinery
-Presence of multiple potential promoters
and bidirectional terminators can confuse
the prediction
-Promoter signals are relatively weak



Rivas et al. (2001)
Strengths Weaknesses
-Doesn’t use any organism-specific info, so
it can be used on any organism with
sufficient comparative sequence data to
identify candidate structural ncRNA loci

-Requires comparative sequence data,
cannot be used on an independent genome
-Detects nongenic sequences that show
conserved RNA structure (false positives)
-Not all ncRNA genes have conserved
intramolecular structures, and will be
missed by this program (false negatives)


